

Chennai - 15 School of Science

ASSIGNMENT

Programme Code No : 131 Programme Name Batch No.of Assignment Maximum Marks

: B.Sc., Mathematics Course Code & Name : BMSS-51, Real Analysis : AY 2021-22 : One Assignment for Each 2 Credits : 30(Average of Total NO .Of Assignments)

Assignment – I

Max.: 30 Marks

Answer any ONE of the question not exceeding 1000 words

1.(a)The set $[0,1] = \{x; 0 \le x \le 1\}$ is uncountable.

(b) If $f: A \rightarrow B$ and the range of f is uncountable , prove that the domain of f is uncountable

2. The sequence $\left\{ \left(1 + \frac{1}{n}\right)^n \right\}_{n=1}^{\infty}$ is convergent

3.(a) If $\{S_n\}_{n=1}^{\infty}$ is a sequence of real numbers which converges to L , then $\{S_n\}_{n=1}^{\infty}$ converges to L^2

(b) Evaluate $\lim_{n\to\infty}\sqrt{n}(\sqrt{n+1}-\sqrt{n})$

Chennai - 15 School of Science

ASSIGNMENT

Batch No.of Assignment Maximum Marks

Programme Code No: 131Programme Name: B.Sc., MathematicsCourse Code & Name: BMSS-51, Real Analysis : AY 2021-22 : One Assignment for Each 2 Credits : 30(Average of Total NO .Of Assignments)

Assignment - II

Max.: 30 Marks

Answer any ONE of the question not exceeding 1000 words.

(1)(a) If $\{S_n\}_{n=1}^{\infty}$ is a Cauchy sequence of real numbers then $\{S_n\}_{n=1}^{\infty}$ is convergent. (b) If $\sum_{n=1}^{\infty} a_n$ is a convergent series then $\lim_{n \to \infty} a_n = 0$ 2.(a) If $\sum_{n=1}^{\infty} a_n$ converges absolutely then the series $\sum_{n=1}^{\infty} a_n$ converges (b) State and prove D'Alembert Ratio Test 3. (a) State and prove the Minkowski Inequality

(b) If f is continuous at a and if g is continuous at f(a) then ggf is continuous at a

Chennai - 15 School of Science

ASSIGNMENT

Programme Code No Programme Name Course Code & Name Batch No.of Assignment Maximum Marks

: 131
: B.Sc., Mathematics
: BMSSE-51, Mathematical Statistics
: AY 2021-22(3rd year)
: One Assignment for Each 2 Credits
: 30(Average of Total NO .Of Assignments)

Assignment – I

Max. : 30 Marks

Answer any ONE of the question not exceeding 1000 words

1. Find Karl Pearson Coefficient of correlation for the following data

х	28	32	38	42	46	52	54	57	58
У	0	1	3	4	2	5	4	6	7

2. Find the regression lines for the following data

Х	6	2	10	4	8
У	9	11	5	8	7

3. Find the Mean, Median, Mode of the following question

Class	Frequency
1-10	3
11-20	7
21-30	13
31-40	17
41-50	12
51-60	10
61-70	8
71-80	8
81-90	6
91-100	6

Chennai - 15 School of Science

ASSIGNMENT

Programme Code No Programme Name Course Code & Name Batch No.of Assignment Maximum Marks

: 131
: B.Sc., Mathematics
: BMSSE-51, Mathematical Statistics
: AY 2021-22(3rd year)
: One Assignment for Each 2 Credits
: 30(Average of Total NO .Of Assignments)

Assignment – II

Max. : 30 Marks

Answer any ONE of the question not exceeding 1000 words

- 1. Write short notes of Hypothesis Testing Procedure
- (a) . A machine is designed to produce insulating washers for electrical devices of average thickness of 0.025cm. A random sample of 10 washers as found to have an average thickness of 0.024 cm, with a standard deviation pf 0.002cm. Test the significance of the deviation .

(b) state and prove The Addition theorem

3. The number of male and female births in 1000 families having five children

Male	0	1	2	3	4	5
Children						
Female	5	4	3	2	1	0
Children						
No of	40	300	250	200	130	80
families						

Test whether the given data is consistent with the hypothesis that the binomial law holds with even chance of getting a male or female child.